Von der Punktewolke zum digitalen Bestandsmodell : ein Schritt zum BIM

Conférence « Géo information 3D » du 13 juin 2017, Olten, Suisse

Tania LANDES

Maitre de conférences Spécialité Topographie INSA Strasbourg (France) 24, boulevard de la Victoire F - 67084 Strasbourg Cedex

tania.landes@insa-strasbourg.fr

Inhalt

- BIM und die Idee einer Doktorarbeit
- Von der Punktewolke zum digitalen Gebäudemodell: Vorstellung der von der Forschungsgruppe entwickelten Methode
- Bewertung der Methode

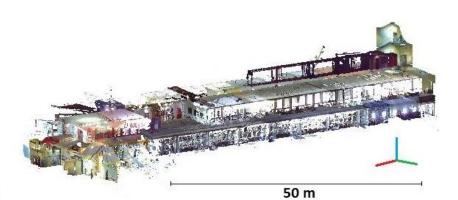
BIM und Modell

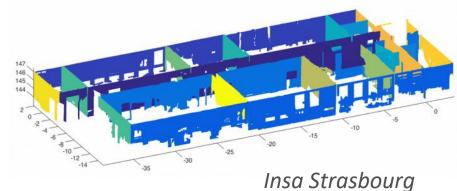
Schlussfolgerung und Perspektiven

2 Arten von BIM

BIM « wie geplant »

BIM und Modell


Erstellung des digitalen Gebäudemodells anhand von Plänen



BIM « wie gebaut »

(villagebim.com)

Erstellung des **digitalen Gebäudemodells** mit Hilfe einer Bestandsaufnahme (rétro-conception).

Welche Rolle spielt der Geomatiker?

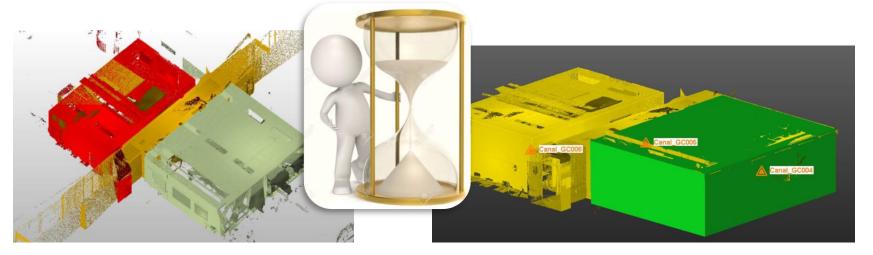
 Zu Beginn: wirklichkeitsgetreue Erfassung und Verbreitung des realisierten Gebäudes

BIM und Modell

- Später: Auswertung und Aktualisierung des digitalen Modells
- Als Vermessungsexperte könnte er ebenfalls die Rolle des Garanten des digitalen Modells übernehmen
 - → **Doktorarbeit**, gemeinschaftlich von der ANRT und dem Berufsverband der Géomètres Experts finanziert, durch unser Team von Hélène Macher (fév. 2014- fév. 2017) realisiert. Doktorvater : Pierre Grussenmeyer wissenschaftliche Begleitung : Tania Landes

BIM « wie gebaut »

Aufnahme und Bearbeitung


Focus 3D Faro (innen)

BIM und Modell

C10 Leica (aussen)

Indirekte Georeferenzierung (Markierungen) oder direkt

Kosolidierung der Wolken (Studentenprojekt)

3D Modellisierung basierend auf den Punktewolken (Studentenprojekt)

Ziele unserer Arbeit

Entwicklung einer **Methode**, welche den Übergang von der Punktewolke zum **digitalen Gebäudemodell automatisiert**. Ziel ist es, das Ergebnis direkt in ein **BIM-Modell** zu integrieren.

Dies beinhaltet:

BIM und Modell

Drei Schritte (Tang et al., 2010):

- Modellierung der Geometrie der Gebäudeelemente
- Zuweisung einer Objektkategorie sowie von Eigenschaften für alle erfassten Elemente
- Beziehungen zwischen den Elementen herstellen

Berücksichtigung der Eigenschaften der Punktewolke (Anil et al., 2011):

- Dichte der Punktewolke
- Auftreten von Masken (Erzeugt Okklusionen)
- Fehlende semantische Information

Rahmenbedingungen der entwickelten Methode

Automatisierung

BIM und Modell

- Rekonstruktion 3D
 « halbautomatisch »
 - → Identifikation der zu automatisierenden Aufgaben

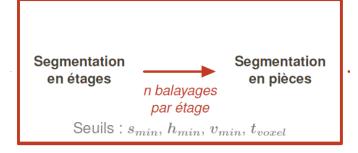
Übertragbarkeit

- Übertragbarkeit des Ansatzes für andere Testgebäude sicherstellen
 - → Definition der zu berücksichtigen Gebäude

Qualität

Schlussfolgerung

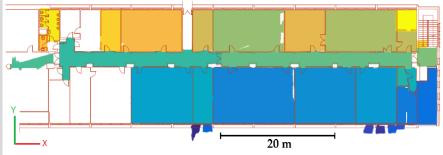
- Geometrische Qualität des Modells
 - → Integration von Qualitätskriterien, Werkzeuge zur Überprüfung


Berücksichtigte Gebäude: 100 m² bis > 1000 m², Büro- und Wohngebäude, keine Industriegebäude oder historische Bauten.

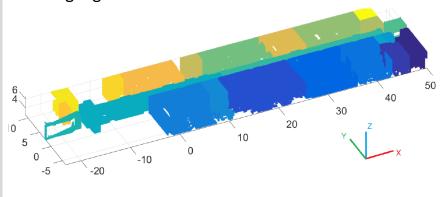
BIM und Modell

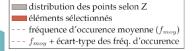
Entwickelte Methode (Thèse Macher, 2017)

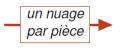
1. Segmentierung in Unterzonen



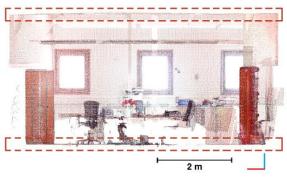
- Die Punktewolken stammen aus unterschiedlichen Lasermessungen
- Bestimmung der Bodenhöhe mit Hilfe eines Histogrammes welches die Punktevertielung un Z-Richtung angibt


Jeder Punktewolke wird eine Etagennummer


zugeordnet 142.5plafond 142 141.5 141 Altitude (140 bureau 139.5 139 5 m 1.4 1.2 0.6 0.4 0.2 0.8Nombre de points


- Erstellung eines binären Bildes, ausgehend von einem in Höhe der Decken ausgeführten Schnittes der Punktewolke, auf einen Plan projiziert
- Vergrösserung des Bereiches auf das binäre Bild angewendet

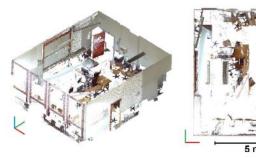
• Übergang von 2D Bereichen zu 3D Bereichen

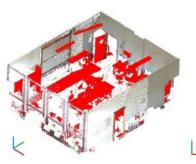

Scan-to-Bim: unser Ansatz Auswertung Schlussfolgerung

2. Segmentierung und Klassifizierung der Plansegmente

BIM und Modell

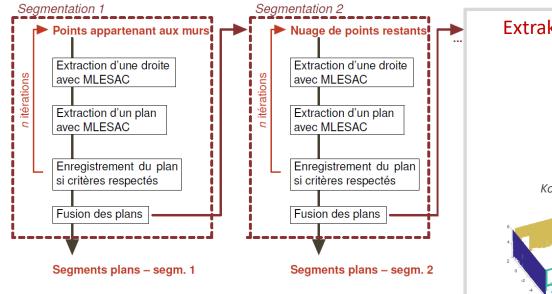
Extraktion der Plansegmente welche Böden und Decken entsprechen

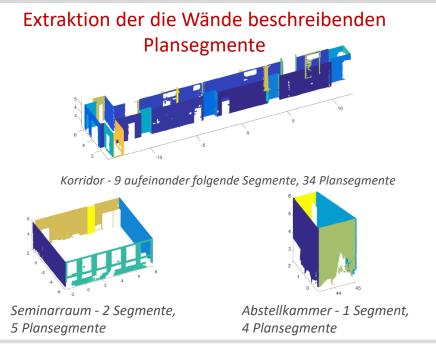

• Grobe Extraktion von Boden und Decke aus der Punktewolke


- Bestimmung von 2 Horizontalschnitten
- Benutzung eines Horizontalkriteriums
- Speicherung der 2 Schnitte und ihrer Parameter

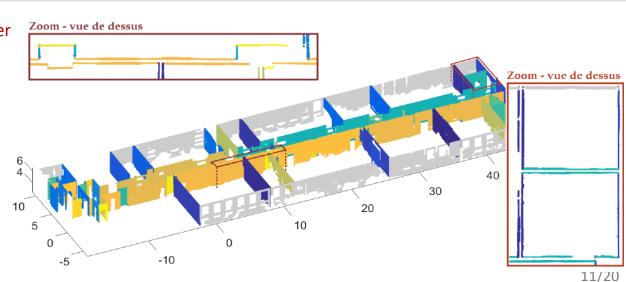
Extraktion der Plansegmente, welche Wände beschreiben

- Klassifizierung der restlichen Punkte in 2 Kategorien :
- Wände
- sonstige Objekte



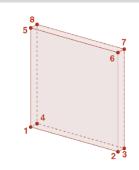

Punktewolke eines Raumes nach der Extraktion von Boden und Decke

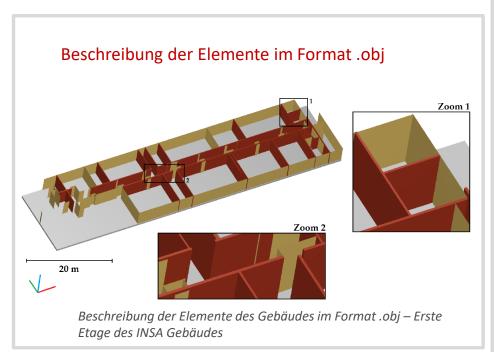
Resultat der Punkteklassifizierung (sonstige Objekte in Rot)



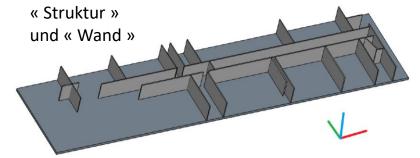
Identifikation der Wände innerhalb der **Punktewolke**

Kriterien: Parallelität und Distanz zwischen den Schnitten

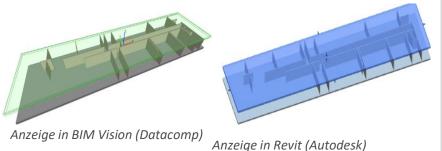

> Zusammenfügen der Plansegmente der Wände (eine Farbe pro Wand) – erste Etage des INSA Gebäudes


3. Rekonstruktion von Wänden und Decken

BIM und Modell



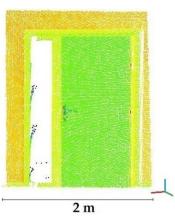
Schlussfolgerung



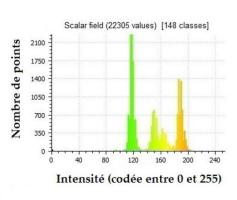
Vom Format .obj zum Format .ifc

- Benutzung des Programms FreeCAD (Freeware)
- Erstellung von Gebäudelementen des Typs

• Validierung der erstellten .ifc Datei

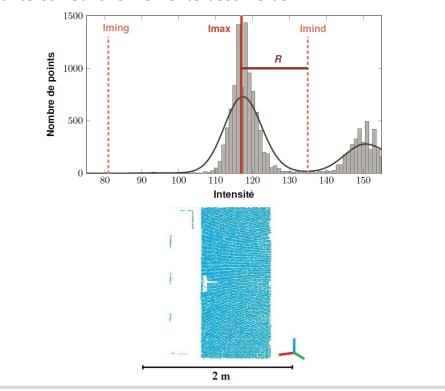


4. Identifizierung von Öffnungen



Benutzung der Intensität

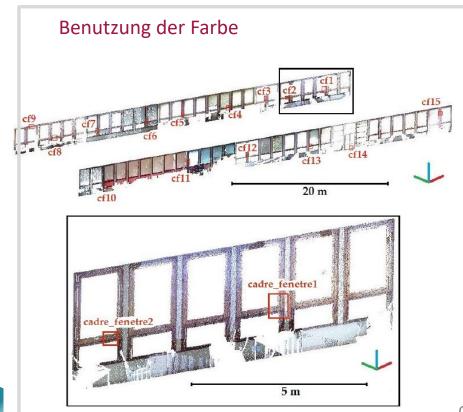
Hypothese: jedes Material besitzt seine eigene, ihm zuzuordnende Intensität → Analyse der Intensitätshistogramme

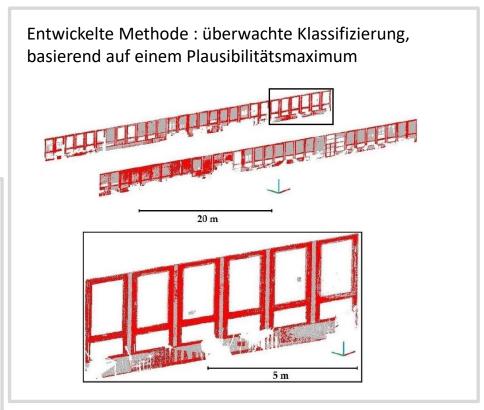


Punktewolke einer Tür welche entsprechend der Intensität eingefärbt ist

Zugehöriges Histogramm

Entwickelte Methode: Extraktion von Spitzen, welche unterschiedliche Elemente beschreiben




Bilanz:

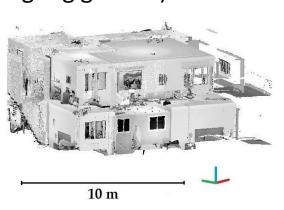
- Die Methode ist anwendbar, wenn die Intensitätsinformation nicht beeinträchtigt ist
- Eine Auswertung wird schwieriger, wenn die Intensitätsinformationen wenig zuverlässig sind

4. Identifizierung von Öffnungen

Bilanz:

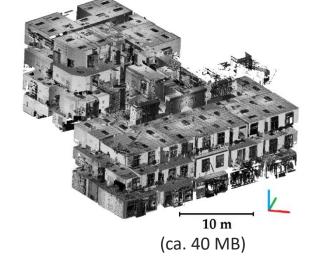
- 85 % der Punkte sind der korrekten Klasse zugeordnet
- Die Mehrzahl der Punkte konnte trotz schlechter Photoqualität einer Klasse zugeordnet werden
- Einige Punkte wurden aufgrund einer zu starken Beleuchtung falsch zugeordnet

Validierung der Methode


Untersuchung der Schwellenwerte welche in der Verarbeitungskette Eingang finden (Bezüglich des räumlichen Samplings der Punktewolke, Raumdimensionen, Einschränkungen und Qualitätskriterien) → Vorschlag von Standardwerten für nicht zu automatisierende Schwellenwerte

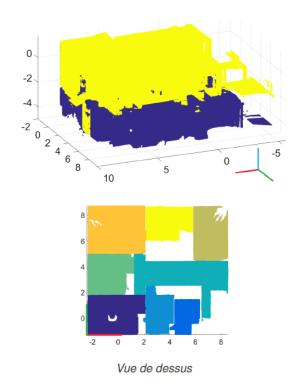
Anwendung auf diverse Punktewolken von Innenräumen

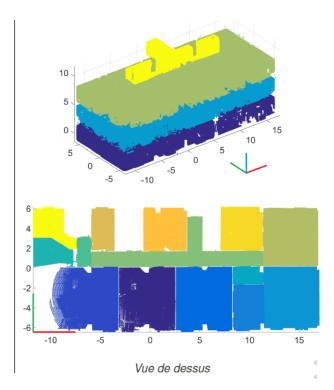
Scan-to-Bim: unser Ansatz


(Unentgeltlich von Geomatikern und Firmen zu Forschungszwecken zur

Verfügung gestellt)

(ca. 10 MB)

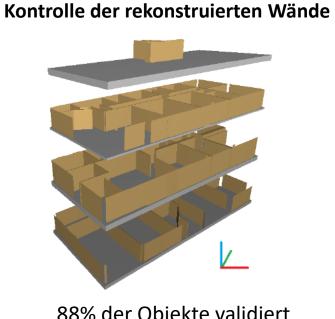

Einzelhaus, Cabinet David PIERROT (Mandelieu)


Bürogebäude FUTURMAP (Lyon)

Bewertung der Segmentierung

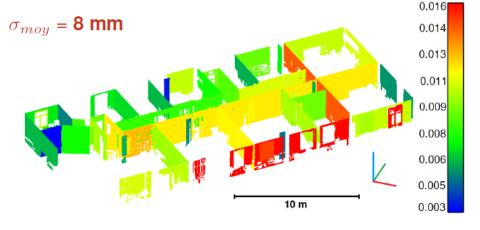
Segmentierung in **Unterzonen**: sehr zufriedenstellend

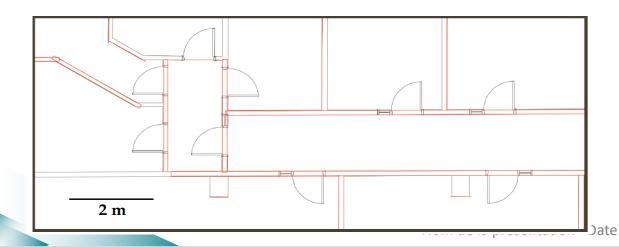
Scan-to-Bim: unser Ansatz



Quantitative Bewertung:

Vergleich der Resultate mit einer Referenzsegmentierung (manuell)


		Plafonds et sols	Murs	Objets
Maison individuelle	VP	99 %	89 %	94 %
	FN	3 %	1 %	21 %
Bâtiment de bureaux	VP	99,5 %	93 %	81 %
	FN	4,5 %	9 %	8 %


Scan-to-Bim: unser Ansatz

88% der Objekte validiert

Analyse der Streuung der Punkte in der Umgebung der rekonstruierten Wände σ_{moy} = 8 mm

Überlagerung eines existierenden Plans und dem Resultat der Rekonstruktion: die Abweichungen schwanken von einigen mm bis zu 2 cm

Schlussfolgerung und Perspektiven

Entwickelte Verarbeitungskette:

- ✓ Segmentierung und Rekonstruktion 3D von tragenden Bauelementen
- ✓ Import des Ergebnisses in ein BIM Programm und Werkzeug zur Kontrolle des Resultats

Erwartungen der Geomatiker

- Entwicklung eines Protokolls für die Erfassung eines Modells « wie gebaut », welches die semantischen Informationen integriert
- ✓ **Zeitgewinn** dank der halbautomatischen Rekonstruktion der tragenden Gebäudeelemente
- ✓ Kontrollwerkzeuge müssen in die Modellisierungsprogramme integriert werden, sie sind unerlässlich um die Qualität des digitalen Gebäudemodells sicher zu stellen
- ✓ **Zusammenarbeit** von Geomatikern und anderen Planern für die Vervollständigung von geometrischer und semantischer Information notwendig
- Vervollständigung der Geometrie durch semantische Information, wie zum Beispiel Daten bezüglich Grundbucheintragungen oder anderes.

Bibliographie

- Macher, H., Landes, T., Grussenmeyer, P., Alby, E., 2014. Semi-automatic Segmentation and Modelling from Point Clouds Towards Historical Building Information Modelling. In: EuroMed 2014, LNCS 8740, pp. 111–120. Best paper award (3rd).
- Macher, H., Landes, T., Grussenmeyer, P., Alby, E., 2014. **Boundaries Extraction from Segmented Point Clouds as Input for Historical Building Information Modelling.** International Journal of Heritage in the Digital Era, 4(3), pp. 669–682, DOI: 10.1260/2047-4970.3.4.669.
- Macher, H., Landes, T., Grussenmeyer, P., 2015. Point clouds segmentation as base for as-built BIM creation. In: International Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W3, pp. 191–197.
- Macher, H., Landes, T., Grussenmeyer, P., 2016. Validation of point clouds segmentation algorithms through their application to several case studies for indoor building modelling. In : International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B5, pp. 667–674.
- Macher, H., 2017. Du nuage de points à la maquette numérique de bâtiment : reconstruction 3D semi-automatique de bâtiments existants, Thèse de doctorat, Ecole doctorale Mathématiques, sciences de l'information et de l'ingénieur (ED 269) (Strasbourg), réalisée à l'INSA Strasbourg, en partenariat avec Laboratoire des sciences de l'Ingénieur, de l'Informatique et de l'Imagerie (laboratoire).
- Landes, T. et Polidori, L., 2017. Jeter des ponts entre technique et droit, Etat des lieux en trois temps, Dossier du mois : Process BIM, Le défi collaboratif, Revue Géomètre n° 2146, Avril 2017 pp.29-30.

Vielen Dank für Ihre Aufmerksamkeit!

Von der Punktewolke zum digitalen Bestandsmodell : ein Schritt zum BIM

Conférence « Géo information 3D » du 13 juin 2017, Olten, Suisse

Tania LANDES

Maitre de conférences Spécialité Topographie INSA Strasbourg (France) 24, boulevard de la Victoire F - 67084 Strasbourg Cedex

tania.landes@insa-strasbourg.fr

